Structure Regularized Unsupervised Discriminant Feature Analysis
نویسندگان
چکیده
Feature selection is an important technique in machine learning research. An effective and robust feature selection method is desired to simultaneously identify the informative features and eliminate the noisy ones of data. In this paper, we consider the unsupervised feature selection problem which is particularly difficult as there is not any class labels that would guide the search for relevant features. To solve this, we propose a novel algorithmic framework which performs unsupervised feature selection. Firstly, the proposed framework implements structure learning, where the data structures (including intrinsic distribution structure and the data segment) are found via a combination of the alternative optimization and clustering. Then, both the intrinsic data structure and data segmentation are formulated as regularization terms for discriminant feature selection. The results of the feature selection also affect the structure learning step in the following iterations. By leveraging the interactions between structure learning and feature selection, we are able to capture more accurate structure of data and select more informative features. Clustering and classification experiments on real world image data sets demonstrate the effectiveness of our method.
منابع مشابه
Normalization Discriminant Independent Component Analysis
In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from t...
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملDiscriminant Analysis for Unsupervised Feature Selection
Feature selection has been proven to be efficient in preparing high dimensional data for data mining and machine learning. As most data is unlabeled, unsupervised feature selection has attracted more and more attention in recent years. Discriminant analysis has been proven to be a powerful technique to select discriminative features for supervised feature selection. To apply discriminant analys...
متن کاملA Nonlinear Grayscale Morphological and Unsupervised method for Human Facial Synthesis Based on an Example Image
Human facial generation of example image is used as a requirement for biometric applications for the purpose of identifying individuals. In this paper, face generation consists of three main steps. In the first step, detection of significant lines and edges of the example image are carried out using nonlinear grayscale morphology. Then, hair areas are identified from the face of sample. The fin...
متن کاملSpectral clustering and discriminant analysis for unsupervised feature selection
In this paper, we propose a novel method for unsupervised feature selection, which utilizes spectral clustering and discriminant analysis to learn the cluster labels of data. During the learning of cluster labels, feature selection is performed simultaneously. By imposing row sparsity on the transformation matrix, the proposed method optimizes for selecting the most discriminative features whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017